Fixing What's Broken: Implementing Compatible Wheel/Rail Profiles for Transit

- Wyman Jones, LA Metro

RAIL TRANSIT SEMINAR . MAY 2, 2016

System Problems

- Planners & Public want High Speed Service
- Design Groups use general rail standards
- Manufacturers want to sell standard products
- Transit Agencies want Cost Effective Designs
- Lack of Rail O&M knowledge of the designers
- Track and Vehicle not compatible in operation
- Fleet O&M Costs (15 married pair) = \$380,000 per year
- Excessive Rail O&M Costs
- Extensive Down Time or Service Disruptions

RAIL TRANSIT SEMINAR . MAY 2, 2016

System Acceptance Testing

- Since the System Testing was required before the New Heavy Rail Cars were provided, RTD acquired loan of what was said to be a similar Heavy Rail Transit Car for Acceptance Testing.
- Miami Heavy Rail Transit Vehicle (28" dia. Wheels)

- During system testing.
 - Showed no wheel wear
 - No abnormal rail wear

RAIL TRANSIT SEMINAR . MAY 2, 2016

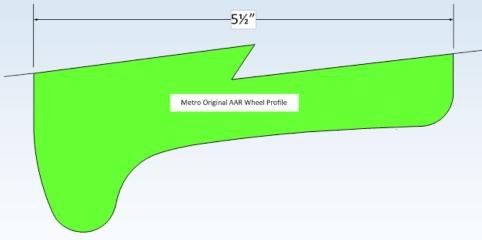
3

WRI 2016

The LA Metro Transit Problem

- Continuous build-up of metal shavings in curves and switch areas, Wheel Flanges required truing every 5,000 to 7,000 miles.
- BREDA Heavy Rail Transit Vehicle
- (34½" dia. Wheels)
 - (7'-7" Axle Spacing)

(Wheels Tossed after 19,000miles)



RAIL TRANSIT SEMINAR . MAY 2, 2016

Original Wheel / Rail Problem

• Original AAR Standard 1:20 Wheel

- Resulted in less than 19,000 miles per wheel
- Not close to expected wheel Life of 200,000 miles

Typical Wheel Profile Solutions

Metro Modified AAR Worn Wheel Pr

Change to AAR 1B Worn Wheel Profile

 Improved Wheel Life to between 20,000 to 25,000 miles, still not close to 200,000 miles

Alternative Wheel / Rail Solution

- Change wheel hardness from original Class "A" hardness to a Class "C" hardness.
- Transferred Wear Problem from Wheel Wear to Rail Wear creating more O&M Problems due to track down time and Service Delays.
- A 6 Degree (955' Radius) Curve had to be replaced in less than 2-years of operation.
- Returned to a Wheel Hardness compromise of a Class "B" hardness with slightly more wheel life and still an acceptable rail Life.

RAIL TRANSIT SEMINAR . MAY 2, 2016

7

WRI 2016

Excessive Rail Wear

• Resulted in LA Metro acquiring a re-furbished Fairmont-Tamper RGH-16 Rail Grinder.

RAIL TRANSIT SEMINAR . MAY 2, 2016

Additional Wheel/Rail Solution

- Introduce the addition of Kelsan LCF (Low Coefficient of Friction) stick lubricators.
- Mounted in a cassette bracket on all wheels.

RAIL TRANSIT SEMINAR . MAY 2, 2016

Initial LA Metro Results

- By changing Wheel Profile to an AAR 1B Worn Profile, the Wheel Life moved from 19,000 miles per wheel to 25,000 miles.
- By adding Flange Lubricators to all wheels, the Wheel Life jumped from 25,000 miles per wheel to 75,000 miles.
- The Traditional Mitigation Methods did not provide any solution towards a 200,000 mile expected wheel life.

RAIL TRANSIT SEMINAR . MAY 2, 2016

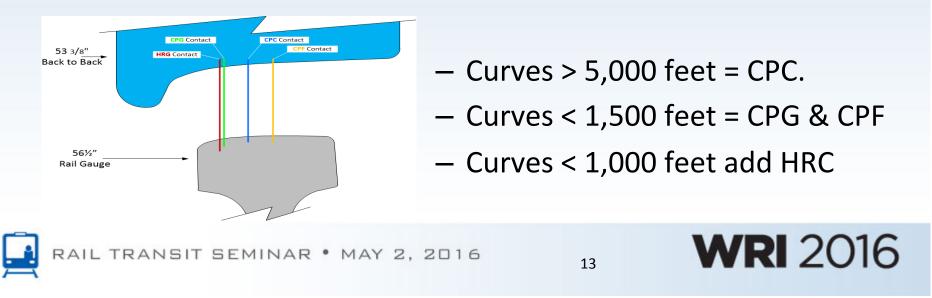
Need for "Outside the Box" Solution

- Developed a Special Task Force to review design and Operating Issues.
- Rail Car was designed for:
 - High Speed Operation (150 mph operation)
 - Not suitable for the tight radius curves required in the La Metro Tunnel Alignment
- Need for Custom Wheel/Rail Design Solution

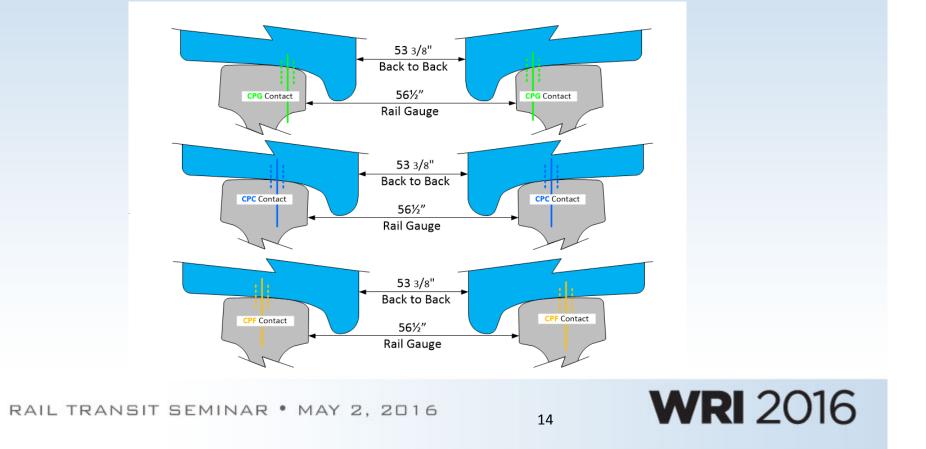
RAIL TRANSIT SEMINAR . MAY 2, 2016

11

WRI 2016


Custom Wheel / Rail Profiles

- Created a Special Wheel Profile to work with a Custom Rail Grinding Program for system compatibility.
- Wheel Profile = Metro Custom RESCO Profile



Custom Curve Rail Grinding Profiles

 Created a special set of Custom Rail Grinding Templates for Curve Negotiation to support the Metro Custom RESCO Wheel Profile.

Custom Tangent Rail Grinding Templates

LA Metro Wheel / Rail Results

- Exposed the importance of a complete Rail System Design which incorporates both vehicle and alignment with operating experience.
- By stepping outside the traditional Wheel / Rail solutions even the worst possible performance can be objectively re-designed by using a custom Wheel /Rail Interface.
- The LA Metro has been able to achieve in excess of 500,000 miles per wheel and minimum rail wear since the introduction of Custom Profiles.

RAIL TRANSIT SEMINAR . MAY 2, 2016

•High Speed Curve Performance: (47 mph to 53 mph)

RAIL TRANSIT SEMINAR . MAY 2, 2016

• Existing Vehicle Performance Evaluation:

– On High Speed Curved Track

- Little to No Flange Contact
- No excessive Noise Issues through curved track

RAIL TRANSIT SEMINAR • MAY 2, 2016

•High Speed Tangent Performance: (53 mph to 69 mph)

RAIL TRANSIT SEMINAR . MAY 2, 2016

• Existing Vehicle Performance Evaluation:

- On High Speed Tangent Track

- Little to No Hunting
- No apparent Noise Issues on tangent track

RAIL TRANSIT SEMINAR . MAY 2, 2016

• Existing Vehicle Performance Evaluation:

- On High Speed Tangent Track

- Little to No Hunting
- No apparent Noise Issues on tangent track

RAIL TRANSIT SEMINAR . MAY 2, 2016

This Concludes the Presentation

RAIL TRANSIT SEMINAR . MAY 2, 2016

